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1. INTRODUCTION

Let C27T denote the Banach space of all 27T-periodic continuous functions
on the real line with the supremum norm [I • ii . Let {Ln} be a sequence of
bounded linear operators of C27T into itself. Suppose that there exists a se
quence {rPn} of positive numbers converging to zero such that every f in C27T

for which II Lin - fi! = o(rPn) is a constant function, and there exists a
nonconstant function fo in C27T such that I! Ln(fo) - fo !! = (D( rPn). Then the
sequence {Ln} is said to be saturated with the order {rPn} and the class Y'(Ln),
consisting of allfin C27T for which Ii Ln(f) - f!! = (D( rPn), is called the satura
tion class.

The problems of saturation have been investigated by several authors; an
excellent source for references and a systematic treatment of theorems of
saturation can be found in Butzer and Nessel [2] and DeVore [5]. Saturation
theory in an arbitrary Banach space setting is treated by Butzer, Nessel, and
Trebels [3,4].

Here we are concerned with trigonometric polynomial operators which can
be defined as follows. Let (?t(n; k))n,k?l be a lower triangular matrix, that is,
an infinite real matrix satisfying ?ten; k) = 0 whenever k > n. Let fE C27T ,

let its Fourier series be

00 00

S[f] = lao + L: (a k cos kx + bk sin kx) = L: Ak(x) (1)
k~ k~

and define

n

Tn(f)(x) = L: ?ten; k) Ak(x),
k~O

where ?ten; 0) = 1.
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Let sn(f)(x) denote the nth partial sum of the conjugate series of (I)

00

S[f] = I (b k cos kx - ak sin kx).
k~l

Then we have

sn(f)(x) = (l/TT)r {f(x + t) - j(x - t)} Dn(t) dt,
o

where

Dn(t) = {cos(t/2) - cos(2n + 1)(t/2)}/2 sin(t/2).

We say that

209

j(x) == (I/2TT) r {f(x + t) - f(x - t)} cot(t/2) dt (3)
o

is the conjugate function of f, if the integral on the right-hand side of (3)
converges absolutely for all x and if

r If(x + t) - f(x - 01 cot(t/2) dt
o

is an integrable function.
The purpose of this paper is to establish a saturation theorem for the

sequence {Tn} of operators on C2n defined by (2); applications are made to
Norlund (= Voronoi) means whose saturation problem is dealt with by
Buchwalter [I], Goel, et al. [6], Tureckii [7,8], and Zuk [9].

2. A SATURATION THEOREM

We have the following saturation theorem:

THEOREM I. Suppose that there exists a sequence {epn} of positive real
numbers converging to zero, which satisfies

and

lim (l - A(n; k))/cPn = k
n->oo

(k == 1,2,3,...) (4)

n

I IA(n; k)j = &(epn),
k~O

(5)
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where A(n; k) = ,\(n; k) - 2,\(n; k + 1) + ,\(n; k + 2). Then {Tn} is saturated
with the order {c?n} and Y(Tn) = {IE C21T ;]E Lip I}.

Proof The proof requires only to show that under assumption (5),
j E Lip 1 implies II Tn(f) - il! = (!)(c?n).

Set

Gn(t) = i A(n; k) r(sin(k + 1) u)ju2 du
k~O t

Then we have

(0 :::;;; t :::;;; 'IT).

Indeed, since

(6)

(k+1)1T

r (sin x)jx2 dx = (!)(log(lj(k + 1) t))
J(k+l)t

= (!)(lj(k + 1)2 t 2)

we have

((k + 1) t < 1)

((k + 1) t ;? 1),

n r(k+l)1T

GnCt) = L A(n; k)(k + 1) J, (sin x)jx2 dx
k~O (k+1)t

i
(k+1)1T

L A(n; k)(k + 1) (sin x)jx2 dx
(k+l)t<1 (k+1)t

i
(k+1)1T

+ L A(n; k)(k + 1) (sin x)jx2 dx,
(k+1)t;;,1 (k+1»

and so

I GnCt)! = (!) [ L IA(n; k)1 (k + 1) 10g(lj(k + 1) t)
(k+1)t<1

+ L I A(n; k)1 (k + l)j(k + 1)2 t 2].

(k+1lt:;;,l

Thus we have

1" \Gn(t)l dt = (!) [1" I L IA(n; k)1 (k + 1) log(l((k + 1) t)
o 0 I(k+llt<1

+ L I A(n; k)!j(k + 1) t21 dt]
(I'+1)t;;,1
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[

n If1/(k+ll
== m {;o I A(n; k)1 0 (k + 1) log(l/(k + 1) t) dt

+ J" l/(k + 1) t 2 dt l]
11 (k+l) I

= m[ktO I A(n; k)1 {I + (k + 1 - l/7T)/(k + l)}]
= m[ktO I A(n; k)l}

Now we have

n

Tn(sn(/))(x) = - L ,\(n; k) Ak(x)
k~l

n

= L {'\(n; k) - '\(n; k + I)} Sk(/)(X)
k~O

n

= L {,\(n; k) - ,\(n; k + 1)}(l/27T)
k~O

x rU(x + t) - j(x - t)} cot(t/2) dt
o

n

- L {,\(n; k) - ,\(n; k + 1)}(1/27T)
k~O

211

x r U(X + t) - j(x - t)} cos(2k + 1)(t/2)/sin(t/2) dt
o

n

= (-f(x) + ao/2) - I {,\(n; k) - ,\(n; k + 1)}(l/27T)
k~O

x r U(x + t) - j(x - t)} cos(2k + 1)(t/2)/sin(t/2) dt.
o

Thus we have

Tif)(x) - f(x) = (l/27T) r U(x + t) - j(x - t)} lfIn(t) dt,
o

where
n

lfIf/(t) = (l/sin(t/2)) L {,\(n; k) - ,\(n; k + I)} cos(2k + 1)(t/2).
k~O
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TOSHIHIKO NISHISHIRAHO

"lJfn(t) = (1/2 sin2(t/2» I A(n; k) sin(k +- 1) t
l..-~O

n

0= (2/t 2 + (T(l» I .1(11; k) sin(k + I) t
k~O

n

= (2/t 2
) I A(n; k) sin(k + 1) t + 6(<p,,)

k-=O

and f E Lip 1, we obtain

Tij)(x) - f(x) = (1/7T) r {I(x --+- t) - /(x - t)}
o

x i: A(n; k) sin(k t I) t dt + (I)(<Pn)
k~O t

= -(1/7T) r{g(x + t) + g(x - t») Gn(t) dt + (I)(<Pn),
o

where g is a bounded integrable function with period 27T.
Therefore, by (6), we have

: T,,(f)(x) - f(x) I = m[( I Gn(t)! dt] + (0(<p,,)

= (1)(<Pn) + m(<Pn) = q <Pn),

which yields

Because of assumption (4) the rest of the conclusion of the theorem
follows from [2, Theorems 12.1.3 and 12.1.4]. Thus the theorem is proved.

COROLLARY. If (4) and (5) in Theorem I are satisfied for <Pn = I 1 
"\(n; I) , then {Tn} is saturated with the order {i I - "\(n; 1)1} and /l"(Tn) =
{IE c2" ;lE Lip I}.

Remark. Condition (5) should be compared with the condition
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where

Ll2 1 - '\(n; k)
k

= 1 - '\(n; k) _ 2(1 - '\(n; k + 1» + 1 - '\(n; k + 2)
k k+l k+2

= 1 _ \A( . k) + 1 - '\(n; k + 2) _ ~ '\(n; k) I
k + 1 I n, k + 2 k \'
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which is the usual condition in saturation theory based on quasi-convexity
(cf. [2, (12.2.4) and Corollary 6.3.9, 4]).

3. ApPLICATIO~ TO NORLUND OPERATORS

Let {Pn}n>1 be a sequence of real numbers such that

Pn = PI + P2 +Pa + ... + Pn i= 0.

The Norlund operator N n in C21T is defined by

n

Nn(f)(x) = (l/Pn) L Pn_kAk(x),
k~O

where Po = 0, which can be obtained by taking the numbers '\(n; k) =

Pn-k/Pn in (2). Note that if

and if

lim Pn-k/Pn = 1
n-~'l)

(k = 1,2, 3, ...),

n-I

L (k + 1) i Pn-k - Pn-k-I ! = (!7([ Pn 1),
k~O

where Po = 0, then limn->a; II Nn(f) - !Ii = °for every fin C21T .
As an immediate consequence of the corollary, we have the following

saturation theorem of the sequence {Nn} of Norlund operators, which should
be compared with the result in [6].

THEOREM 2. Suppose that Pn i= °(n = 1,2,3,...), limn->a;Pn/Pn = 0,

k-I

lim sign(Pn) L Pn-dl Pn i = kn->a;
i~O

(k = 1, 2, 3, ...) (7)
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and
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n

I IPi< - Pk-l i = (D(I Pn i), (8)

Then {Nn} is saturated with the order {i Pn/Pn I} and yeNn) = {f E C277 ;

!E Lip I}.

Proof Take ..\(n; k) = Pn-k/Pn . Then it can be seen that

k-l

I - ..\(n; k) = (l/Pn) I Pn-i
i~O

and

A(n; k) = (Pn-k - Pn-k-l)/Pn .

Thus we have
k-l

(I - ..\(n; k))/Il - ..\(n; 1)1 = sign(Pn) I Pn-dl Pn I,
i~O

and so the desired result follows from the Corollary.

Remark. Observe that (7) is equivalent to

(i = 0, 1,2,...)

and that, ifPn+l ~ Pn > °(n = 1,2,3,...), then (8) is automatically satisfied.
Finally, we mention some examples of ..\(n; k) (= Pn-k/Pn) and epn (=

IPn/Pn f), respectively.

(i) ..\(n; k) = (n - k)/n, epn = l/n

for Pn = 1 (in this case, the operator Nn coincides with the nth Cesaro mean
operator (of order 1)).

(oo) ,(. k) = (n - k)(n - k + 1)
11 " n, n(n + 1) ,

for Pn = n.

("') ,(. k) = (n - k)(n - k + l)(n - k + 2)
III " n, n(n + 1)(n + 2) ,

for Pn = n(n + 1).

'( . k) = (n - k)(n - k + 1){2(n - k) + I}
(iv) "n, n(n + 1)(2n + 1) ,

6n
epn = (n + l)(2n + I)

for Pn = n2
•
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(v) A(' k) = I (n - k)(n - k + 1) 12

n, I n(n + 1) ,
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